

CALCULATION POLICY

Prepared by: Kate Whyatt
Date: April 2022
Review Date: April 2024
Our vision is for all children to be safe, happy and learning. We deliver this vision through clear aims that are underpinned by our schoop eiffinitments.

We value:

At Thorns, we use the White Rose Maths Scheme of Learning supported by iSee Reasoning, iSee Problem Solving and NCETM resources.

In order to assist teachers and learners, a clear pathway has been developed to support secure understanding of calculations. These use the concept of Concrete (manipulatives), Pictorial (representation) and Abstract (written methods - formal and informal). This calculation policy is designed to support the teaching of maths in Reception - Year 6.

The exemplars shown in Appendix 2 are taken from The National Curriculum 2014 and are the end goal of this calculation policy.

Addition				
Calculation Stage	Objective and Strategies	Concrete	Pictorial	Abstract
Stage 1:Concrete objects and pictorial representations.	Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	\square	$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Stage 2: Number lines and 100 squares	Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

	Using a 100 square - adding 10s by dropping down		Find missing numbers from a 100 square by using knowledge and pre-existing skills. Drop down, count on and use pictorial representations.	$17+11$ Drop down and count on in jumps.
Stage 3: Mental methods evolving into written methods	Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	$3+9=$ Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?
	Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10 .	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Stage 4: Column Method	Column methodregrouping	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10 . Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here. $\begin{array}{r} 536 \\ +85 \\ \hline \frac{621}{11} \end{array}$

Stage 5: Column addition, moving to decimals and larger numbers.	Column method moving to decimals and larger numbers/multiple numbers.	As above, use physical representations such as large decimal points on a WB, using a line of children as numbers.		8 $\bullet 0$ \bullet \bullet 1		$\bullet \bullet$ $\bullet \bullet$ \bullet	As with above, show another column with striking decimal points.	2 3 . 3 6 1 9 . 0 8 0 5 9 . 7 7 0 + 1 . 3 0 0 9 3 . 5 1 1 2 1 2 Use and represent 0 as a place holder in step one. Units of measurement come as final steps.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Subtraction}

\hline Calculation Stage \& Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Stage 1: Concrete objects and pictorial representations \& Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

\[
6-2=4

\] \& | Cross out drawn objects to show what has been taken away. |
| :--- |
| $15-3=$ |
| 12 | \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline \& Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count |
| :--- |
| backwards in ones. |
| 13-4 |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

\hline
\end{tabular}

Stage 2: Number lines and 100 squares	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Comparison Bar Models difference between 2 numbers.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
	Part, Part Whole Model	Link to additionuse the part whole model to help explain the inverse between addition and subtraction.	Use a pictorial representation of objects to show the part part whole model.	

		If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$		Move to using numbers within the part whole model.
Stage 3: Linking concrete to abstract to decompose	Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?
	Column method without regrouping			$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.

Stage 4: Compact decomposition, moving to larger numbers and decimals	Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals.

Multiplication				
Calculation Stage	Objective and Strategies	Concrete	Pictorial	Abstract
Stage 1: Concrete objects and pictorial representations	Doubling		Draw pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.
	Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Stage 2: Arrays Stage 3: Repeated addition linking to practical apparatus	Repeated addition		There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6	Write addition sentences to describe objects and pictures.
	Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \end{aligned}$ $\begin{aligned} & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Stage 6: Compact method 2x2 and 3×2 and beyond		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	With long multiplication, remind the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer.

Division				
Calculation Stage	Objective and Strategies	Concrete	Pictorial	Abstract
Stage 1: Concrete objects and pictorial representations	Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
Stage 2: Grouping or repeated subtraction	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number tine to snow jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

		$96 \div 3=32$		
	Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \\ \hline \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
	Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.	Complete written divisions and show the remainder using r .

			Draw dots and group them to divide an amount and clearly show a remainder.	
Stage 3: Short division (Bus stop)	Short division	Use place value counters to divide using the bus stop method alongside Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. Write down higher multiplication tables to help with trickier numbers:	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder.
Stage 4: Long division	Long division	We look how much in 1 group so the answer is 14 .	$\begin{aligned} & 80 \\ & 96 \\ & 112 \\ & 128 \end{aligned}$	 1 4 . Finally move into decimal places to divide the total accurately.

Appendix 1 - Vocabulary						
Strand	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition and Subtraction	Number bonds, number line, add, more, plus, make, sum, total, altogether, inverse, double, near double, equals, is the same as (including equals sign), difference between, subtract, take away, minus How many more to make ...?, How many more is ... than ...?, How much more is ...?, How many fewer is ... than ... ?, How much less is...?		Column addition and subtraction		Efficient written method	Order of operations
Multiplication and Division	Once, twice, three, five times, multiple of times Multiply, multiply by, repeated addition, array, row, column, double, halve, share, share equally, group in pairs, threes, etc., equal groups of, divide, divided by, left over		Product, multiples of four, eight, fifty and one hundred, scale up	Multiplication facts (up to 12×12), division facts, inverse, derive	Factor pairs, composite numbers, prime number, prime factors, square number, cubed number, formal written method	Order of operations Common factors and common multiples

Appendix 2 - Exemplars from The National Curriculum 2014

Addition and Subtraction

$789+642$ becomes	874-523 becomes	932-457 becomes	932-457 becomes
		$8 \quad 12 \quad 1$	$\begin{array}{ll} 1 & 1 \end{array}$
$7 \quad 8 \quad 9$	$8 \quad 74$	932	932
+ 642	- 523	- 457	$-\int_{5}^{4} 5_{6}^{6} 7$
$\begin{array}{lllll}1 & 4 & 3 & 1\end{array}$	$3 \quad 51$	475	475
11			
Answer: 1431	Answer: 351	Answer: 475	Answer: 475

Short Multiplication

24×6 becomes
$\mathbf{2} \quad 4$
$\times \quad$
$\mathbf{1}$

Answer: 144
342×7 becomes
342

\times			$\mathbf{7}$
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{4}$
	2	1	

Answer: 2394
2741×6 becomes
$\begin{array}{llll}2 & 7 & 4 & 1\end{array}$

\times				6
1	6	4	4	6
	4	2		

Answer: 16446

Long Multiplication

$$
\begin{aligned}
& 24 \times 16 \text { becomes } \\
& \begin{array}{r}
2 \\
24 \\
\times \quad 14 \\
\hline 24 \\
14
\end{array}
\end{aligned}
$$

Answer: 384
124×26 becomes

\[

\]

124×26 becomes

$$
\begin{aligned}
& \begin{array}{ll}
1 & 2 \\
1 & 2
\end{array} \\
& \begin{array}{r}
\times \quad 2 \quad 6 \\
\hline 744
\end{array} \\
& \begin{array}{llll}
\mathbf{2} & \mathbf{4} & 8 & 0 \\
\hline \mathbf{3} & \mathbf{2} & 2 & 4 \\
\hline
\end{array}
\end{aligned}
$$

Answer: 3224

Long Division

$$
\begin{aligned}
& 432 \div 15 \text { becomes } \\
& \begin{array}{llllll}
& & & 2 & 8 & r 12
\end{array} \\
& \begin{array}{lll}
3 & 0 & 0 \\
\hline 1 & 3 & 2
\end{array} \\
& \begin{array}{rrr}
1 & 2 & 0 \\
\hline & 1 & 2
\end{array}
\end{aligned}
$$

Answer: 28 remainder 12

$$
432 \div 15 \text { becomes }
$$

					2	8
1	5	4	3			

\[

\]

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

			2	8	8
	5	4	2	2	

3	0	\downarrow	
1	3	2	
1	2	0	\downarrow
	1	2	0
	1	2	0
		0	

Answer: 28.8

